
Key to the workshop on constructing the astrolabe according
to traditional geometric methods and the simplified methodology
of Taqi al-Din

Part 1

a. We can look at Figure 1a in two different ways. On one hand (1) it is
the plane of projection, which is the plane of the celestial equator. On the
other hand (2) one can also see it as a cross-section of the celestial sphere,
with A the pole of projection, B the north celestial pole, and GD a cross-
section of the projection plane, and TZ a cross-section of the ecliptic. Then
T is the winter solstice, Z the summer solstice, and 6 TEG = 6 ZED = ε,
the obliquity of the ecliptic. If the figure is viewed as a cross-section, Y is
the projection of T and H the projection of Z. Therefore EY and EK are
the radii of the tropics of Capricorn and Cancer respectively.

b. There are many different ways to prove this. Here is one example.
Because 6 TEG = 6 ZED = ε, TEZ is a diameter of the circle AGBD.

We have 6 ATE = 6 AY E+ 6 TEY , therefore 6 AY E = 6 ATE− 6 TEY =
1
2

arc AZ− arc GT = 1
2
(90 + ε) − ε = 1

2
(90 − ε). Because X is the centre

of the circle through Y,A and H, we have Y X = XA = XH, therefore
6 Y AX = 6 AYX = 6 TY E = 1

2
(90 − ε) But 6 TAB = 1

2
arc BT = 1

2
(90 + ε).

We conclude 6 PAB = ε. Therefore arc PB = 2ε. Since AB and GD are
perpendicular, while 6 BAP = 6 GET = ε, AP is perpendicular to TZ. This
last theorem will be useful to find similar shortcuts in the future.

c. Put AE = R = 60. Since 6 BAT = 1
2
(90 + ε), therefore EY =

R tan 1
2
(90 + ε) = 60 tan 1

2
113.5o = 91.515209 . . .. Since 6 BAZ = 1

2
(90 − ε),

EH = R tan 1
2
(90 − ε) = 60 tan 1

2
66.5o = 39.337724 . . . Using these two val-

ues one can find the radius of the ecliptic 1
2
(91.515209 . . .+ 39.337724 . . .) =

65.42647 . . . and the distance of its centre to the centre of the astrolabe as
1
2
(91.515209 . . .− 39.337724 . . .) = 26.08874 . . . ..

d. Taqi al-Din (manuscript ff. 61b, 62a in the table headers) gives
rounded values of the four numbers in two sexagesimal places. Rounded
to three sexagesimal places (wolframalpha.com) the values are 91;30,54,45
and 39;20,15,48 and 65,25,35,17 and 26;5,19,28.

Part 2

a. See a, part 1. We can consider Figure 2a in two ways: (1) as the
plane of projection, which is the plane of the celestial equator, but also (2)
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as the local meridian plane with A the celestial south pole, B the celestial
north pole,R the zenith, GD the cross-section of the celestial equator, ZT the
cross-section of the local horizon. Then arc AZ = BT = φ, the geographical
latitude. Since R is the zenith, BR = 90o, therefore also arc RG = φ. Then
Q is the projection of the zenith, and H and Y are the projections of the
south point and north point of the horizon.

Similarly, if PS is the cross-section of an almucantar of altitude a we
have arc ZP = arc TS = a, therefore arc SR = arc RP = 90o − a. The
construction now follows.

b. For the shortcut see part 1, key to b, where we change ε to 90o − φ .
Note that we have 6 KAE = 90o−φ; this gives a shortcut for the computation
of KE.

Part 2: Comparison with Taqi al-Din’s methodology

c. Table A contains the following relevant data for φ = 32o, R = 60:
Distance from the zenith to the centre of the astrolabe 33;16, radius 0;0

(the zenith is a point)
Almucantar for altitude 60o: distance to the centre of the astrolabe 36;27,

radius 21;29
Amucantar for altitude 30o: distance to the centre of the astrolabe 49;24,

radius 50;26
We can round these values to obtain the “ideal” measurements in mil-

limeters in our figure: zenith 33 mm, almucantar for altitude 60o distance 36
mm, radius 21 mm, and so on.

d. For an almucantar of altitude a, the intersections with GD have the
following distances to the centre: R tan 1

2
((90−φ)+(90−a)) and R tan 1

2
((90−

φ)− (90− a)). I If a < φ we have 90− a > 90−φ so that R tan 1
2
((90−φ)−

(90 − a)) < 0, this means that the almucantar intersects the meridian GD
north of (i.e. below) the pole E.

We conclude that the radius of the almucantar is
R
2

(tan(90 − 1
2
(a + φ)) − tan 1

2
(a − φ)) and the distance of the centre of the

almucantar to the centre of the astrolabe is R
2

(tan(90−1
2
(a+φ))+tan 1

2
(a−φ)),

modulo typing errors.
Taqi al-Din computes all these radii and distances on the basis of his “fun-

damental table” in the beginning of the manuscript, which presents values
for R tanx for intervals of 5 minutes of arc, from 0o5′ to 89o55′.
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Part 3: Azimuthal Circles

The relevant entries in table B (for the equator φ = 0o) are as follows:
Almucantar for altitude 30o: distance of the centre from the centre of the

astrolabe 120;0. Radius of the almucantar 103;55.
Almucantar for altitude 60o: distance of the centre from the centre of the

astrolabe 66;16. radius of the almucantar 34;38.
The computations for the azimuthal circles for φ = 32o are as follows:
constant c = (70 + 46

60
)/60 = 1.179444 . . .

For the azimuthal circle for 30o, the distance of the centre to V is
c · (34 + 38

60
) ≈ 40.8. radius of the azimuthal circle c · (66 + 16

60
) ≈ 78.2

For the azimuthal circle for 60o, the distance of the centre to V is
c · (103 + 55

60
) ≈ 122.6. radius of the azimuthal circle c · 120 = 2 · (70 + 46

60
),

the same as the distance between zenith and nadir (which together with the
centre of the azimuthal circle form an equilateral triangle).

General: The table for φ = 0o contains the following entries. Put R = 60.
The almucantar with altitude a intersects the meridian in R tan a

2
and

R tan(90o − a
2
). Thus we obtain

the centre of the almucantar R
2

(tan(90o − a
2
) + tan a

2
) = R

sin a
, thus for

a = 30o we obtain exactly 120.
the radius of the almucantar R

2
(tan(90o − a

2
) − tan a

2
) = R tan(90o − a).

With these formulas one can show that Taqi al-Din correctly used the
table for the azimuthal circles:

For example, in the right triangle QVW , if we put 6 V QW = 90 − a and
QV = R1, then VW = R1 tan(90o − a) and QW = R1

sin a
. Therefore we need

to multiply the numbers in the table for φ = 0o with a factor R1

R
.
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